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We consider an Ising model with Kac potential 7aK(7 Ix[) which may have 
arbitrary sign, and show, following Gates and Penrose, that the free energy in 
the classical limit ?--*0+ can be obtained from a variational principle. When 
the Fourier transform of the potential has its maximum at p = 0 one recovers 
the usual mean-field theory of magnetism. When the maximum occurs for 
P04=0, however, one obtains an oscillatory or helicoidal phase in which the 
magnetization near the critical point oscillates with period 2~/[pd. An example 
with a potential possessing parameter-dependent oscillations is shown to exhibit 
crossover phenomena and a mu!ticritical Lifshitz point in the classical limit. 

KEY WORDS: Kac potential; mean-field theory; variational principle; 
helicoidal phase; crossover; Lifshitz point. 

1. i N T R O D U C T I O N  

It is well k n o w n  that  the classical mean-f ield theories for fluid and magnet ic  
systems can be ob ta ined  by cons ider ing  systems with weak,  long- ranged  
potent ia l s  of K a c  type 7dK(Tr) in d d imens ions  and tak ing  the l imit  7 ~ 0 +  
after the t h e r m o d y n a m i c  limit. 

Fo l lowing  the p ioneer ing  work  of K a c  I1) and  others,  t2'31 Lebowi tz  and  
Penrose  (4) considered a system of  ident ical  part icles  subject  to a t w o - b o d y  
in terac t ion  poten t ia l  of the form 

~(r)  = q(r)  + y'lK(yr) (1.1) 

where q(r)  represents  the shor t - r anged  or  ha rd  core c o m p o n e n t  and  the 
second term in (I .1)  represents  the weak, long- ranged  a t t rac t ive  part .  
Assuming  tha t  K(r )  is nonnegat ive ,  symmetr ic ,  and  Riemann- in tegrab le  
over  any  b o u n d e d  region of d -d imens iona l  space, Lebowi tz  and  Penrose  
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were able to recover rigorously the classical van der Waals-Maxwell theory 
of phase transitions by taking the limit ), ~ 0 + after the thermodynamic 
limit. 

Gates and Penrose (5) subsequently generalized this result by relaxing 
the condition that K(r) be nonnegative and replacing it with the 
requirement that it be simply bounded. In this way they were able to 
demonstrate deviations from the van der Waals-Maxwell theory. 

The classical Curie-Weiss theory of ferromagnetism can also be 
obtained (6) by considering an Ising system of spins # i=  +1, i =  1, 2,..., N, 
on a d-dimensional lattice with interaction energy 

E{#} --- - Z YaK(Trij) l~il~j (1.2) 
l<~i<jK~N 

where K(r) satisfies the Lebowitz-Penrose conditions and r~ denotes the 
lattice vector between spins i and j. Again, the classical theory is recovered 
by taking the limit 7 ~ 0 + after the thermodynamic limit. 

Our purpose here is to follow Gates and Penrose and consider Ising 
spin systems with Kac potentials that are not necessarily nonnegative, but 
are merely bounded and Riemann-integrable. This allows for competing 
and oscillatory interactions to occur in the system. Like Gates and 
Penrose, we note that for certain potentials one gets deviations from stan- 
dard mean-field theory in which the magnetization is not uniform, but 
possesses spatial oscillations. Similar behavior was found recently for the 
spherical model with oscillatory and competing interactions. (7'8) The 
Gates-Penrose version of the spherical model was also considered recently 
by Katz. (9~ 

In the following section we express the free energy for the Ising model 
in the classical limit as a variational principle in much the same way as 
Gates and Penrose did for the gas. The extremal equations in our case, 
however, are straightforward generalizations of the usual mean-field 
equations and are much easier to analyze, especially in the critical region, 
where we show in Section 3 that under fairly general circumstances the 
magnetization below the critical point undergoes spatial oscillations. A par- 
ticular case examined in Section 4 is shown also to possess a Lifshitz point 
corresponding to multicriticality of the paramagnetic, ferromagnetic, and 
oscillatory or helicoidal phases. 

Our results are summarized and discussed in the final section, where 
we speculate on their relevance to spin glasses and, more generally, to 
systems with long-range RKKY interactions. 
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2. T H E  V A R I A T I O N A L  P R I N C I P L E  

Since in the classical limit the results are essentially dimension- 
independent, we consider for simplicity the one-dimensional Ising model of 
N spins #i, i-- 1, 2 ..... N, with interaction energy 

E{#}  = - ~ 7K(y [i-j[)#,pj (2.1) 
l < ~ i < j < ~ N  

Assuming only that K(x) is symmetric, bounded, and Riemann- 
integrable over any bounded subinterval of the real line, we show in the 
Appendix that in the classical limit (7-~ 0 + following the thermodynamic 
limit) the fi'ee energy is given by the variational principle 

- f lO(f l )= max lim fM{m(x)} (2.2) 
{m(x)} M ~ 

where the functional fM is defined by 

ff 
M 

fM{m(x)} =(4M) -1 flK([x-yt)m(x)m(y)dxdy 
- - M  

- ( 2 M )  l fM-M(I +2(X) Iog l+m(x)2 

1 - m ( x )  log 1 - 2 ( x )  ) dx (2.3) 

and in (2.2) the maximization with respect to m(x) and the limit M to 
infinity are interchangeable. 

Elementary use of the calculus of variations shows that for finite 34, 
the functional fM is extremal when m(x) satisfies the condition 

Ef 1 m(x) = tanh fl K(x- y) m(y) dy 
M 

(2.4) 

which will be recognized as a straightforward and obvious generalization of 
the standard mean-field equation. In fact, when K(x) is nonnegative, the 
uniform solution m(x)=m 0 (independent of x) of (2.4) maximizes fM and 
one easily recovers the classical Curie-Weiss theory. 

In general, the solution mo(x) of (2.4) that maximizes fM can be inter- 
preted as the (zero-field) magnetization density and when substituted into 
(2.2) and (2.3) the free energy is given by 

822/46/5-6-12 
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- f l$(f i )  = lira - ( 4 M )  -1 flK(x-y)mo(x)mo(y)dxdy 
m ~ o o  - - m  

+ ,2M, lfM_MlOgI2coshflfMMK(X--y)mo(y)dyldx } 

(2.5) 

which also bears close resemblance to the corresponding Curie-Weiss 
expression. 

As in the case of ordinary mean-field theory, it is not difficult to show 
that in general the trivial solution re(x)= 0, corresponding to zero spon- 
taneous magnetization, maximizes fM for temperatures T above a certain 
critical temperature 1",. To see this, we return to (2.3) and expand the 
logarithmic terms in a Taylor series to obtain the expression 

ff 
M 

f~4{m(x)}=log2 +(4M) -l fiK(x- y)m(x)m(y)dxdy 
- - M  

- (2M)- '  [m(x)] 2n dx/2n(2n- 1) (2.6) 
n = l  - - M  

where, since lrn(x)[ < l, we have used uniform convergence to interchange 
integration and summation in the second term. 

From (2.6), it is obvious that the trivial solution rno(x)=0 will 
correspond to a global maximum provided the quadratic term 

M 

Q = (4M)- '  f lK(x-y) m(x)m(y)dxdy 
M 

- ( 4 M )  -1 f M M [m(x)]2dx (2.7) 

in (2.6) is negative-definite for all m(x). 
In order to simplify (2.7), we form the periodic extensions of m and K 

and define their complete Fourier series (on - M  ~< x ~< M) by 

rn(x) = (2M) -1 ~ rh(mr/M) exp(imzx/M) (2.8) 
n ~ - - o o  

where the Fourier coefficients rh are given by 

f 
M 

rh(p) = re(x) e ipx dx (2.9) 
M 
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and similarly for K(x) and its Fourier coefficients /~(p). Written in this 
form, (2.8) and (2.9) reduce immediately to Fourier integrals in the limit 
M ~ oo. For finite M, however, substitution of the Fourier series for m and 
K into (2.7) yields 

(2.10) 

It then follows that the trivial solution m(x)= 0 of (2.4), corresponding to 
a state of zero spontaneous magnetization, maximizes (2.3) when 

fi~2(nrc/M)- 1 ~<0 for all n (2.11) 

In particular, if T,. is defined by 

kT~ = sup K(p) (2.12) 

then m ( x ) = 0  when T >  Tc. 
When K(x) ~ 0 the supremum in (2.12) is achieved when p = 0 and T c 

takes its Curie-Weiss value 

f 
~ 

~rcw =~(0)= X(x)dx (2.13) 

in the limit M-~ oo. In this case m o is uniform and nonzero only when 
T <  Tcw. More generally, when the supremum is reached at some Por  0, 

kL  = R(po) > kTcw (2.14) 

In such a case one might expect a nonzero and nonuniform spontaneous 
magnetization for T <  T~.. 

In the following section we examine the generalized mean-field 
equation (2.4) in the critical region just below T,. for P0 r 0 and show that 
an oscillatory solution of (2.4) maximizes fM{m(x)}. 

3. CR IT ICAL  REGION A N A L Y S I S  

In this section we investigate solutions of (2.4) in the critical region 
/~=/~c+e, where /?c= [/~(po)] -1, p o e 0 ,  and e is small and positive. As 
~--~0+, m(x)~O by continuity, so we can invert (2.4) and expand in 
powers of m(x) to obtain 

f 
oO 

(tic+e) K(x--y)  m(y)dy=m(x)+�89 "'" 
- - o 0  

(3.1) 
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where we have taken M ~ oe in the previous expression for re(x) in accor- 
dance with (2.2). 

At the critical point (g=0)  the linear approximation to (3.1) has 
solutions mo exp(+_ip0x) for arbitrary mo. For e > 0 we retain the cubic 
term in (3.1) and by symmetry look for solutions of the form 

m(x)  = a cos(pox ) + b cos(3pox) + " -  (3.2) 

Direct substitution of (3.2) into (3.1) yields 

(,+ 

where 

a cos(pox) +-fiT~ (13c + e)b cos(3pox) + "'" 

= [a + ~(a 3 + aZb + 2ab2)] cos(poX ) 

+ [b + ~ (a  3 + 3b 3 + 6a2b)] cos(3po) + "'" 

/~,--- [g(3po)3 -1 > /L  

(3.3) 

(3.4) 

Equating coefficients of cos(pox) and cos(3poX), we have that 

e/fl c = ~(a 2 + ab + 2b 2) (3.5) 

and 

( g / ~ l _ A ) b =  l 3 ~(a  + 3b 3 + 6a2b) (3.6) 

where 

A = 1 -1~,/13~ > 0  (3.7) 

To leading order, we then have 

a~2(e/f i~) 1/2, b ~ - ( 2 / 3 A ) ( a / f i , . )  3/2, as ~ 0 +  (3.8) 

Obviously, one can include further terms in (3.2) and extend the 
asymptotic expansion obtained above for small e > 0. It should be noted, 
however, that this procedure only works when Por  0. In the ferromagnetic 
case, for example, where Po = 0, it will be seen from (3.4) and (3.7) that 
A --0 and hence from (3.6) that b, as well as a, is of order e 1/2. Equation 
(3.2) then reduces to the usual mean-field result. 

We note finally from (2.5), (2.6), (2.10), (3.2), and (3.8) that when 
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Po ~ 0 the free energy and spontaneous magnetization in the critical region 
are given, respectively, to leading order by 

-fl~, ~ log 2 + [fiK(Po) - 1 ] a 2 

= l o g 2 + 2 ( T J T - 1 )  2 as T--+T c -  (3.9) 

and 

mo(x )~2(Tc . /T -1 ) l /2cos (po  x) as T--+ T c -  (3.10) 

E X A M P L E  

A particularly simple example that gives nonuniform behavior is the 

. 

long-range oscillatory potential 

K(x) = e x p ( - 2  lxl) cos #x ( 2 > 0 )  (4.1) 

The Fourier transform of K is 

F s  2 ] 1 + 2 1 2 2 + ( p + ] / ) 2 ] - 1  (4.2) 

which has its maximum value 

fl,.(2) l = m a x R ( p ) = R ( p o ) = 2 / 2 # [ ( , t 2 + # 2 ) i / 2 - ] / ]  (4.3) 

when 

p o  2 = 2#(22.4_ ] / 2 ) 1 / 2  _ (/~2 At - ] 1 2 )  provided 2 < ]/x/'5 (4.4) 

To leading order, from (3.10) the spontaneous magnetization has the 
form 

re(x) ~ 2 ( T , ] T -  1) 1/2 cos(P0X) as r ~  T~.- (4.5) 

provided 2 < # x~-  

When 2 > # x/3, R(p)  has its maximum at p = 0, in which case 

f l , . ( )~) - '  = K ( 0 )  = 2~ / (~  2 + ]/2) 

and the spontaneous magnetization has the usual mean-field ferromagnetic 
behavior 

m o ~  [3(Tc. /T-  1)] I/2 as T - ,  L -  (4.6) 

And of course when T >  Tc(2) we have the paramagnetic phase r e ( x ) = 0  
for arbitrary 2 and #. 
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Ferromagnetic 
Helicoidal ~ / /  

Li~shitz point~"~ 

~ B = B e l t ]  

Paramagnetic 

~/2 X 
Fig. 1. Phase diagram for the potential K(x)= exp(-2 ]x])cos ~x. 

The situation is summarized in Fig. 1 for some fixed (arbitrary) #. The 
region 2<~t x/3, fl>fic(2) corresponds to the oscillatory or helicoidal 

phase, 2 >/~ ,,f3, fi > fl~()0 to the ferromagnetic phase, and/3 </?,.(2) to the 
paramagnetic phase. The meeting point of the three phases at 2 = # x//3, 
/3 =/3c(2) is usually referred to as a Lifshitz point. 

We expect these results to be typical of cases where the potential 
changes sign. We stress, however, that we have only examined the form of 
the spontaneous magnetization in the helicoidal region in the 
neighborhood of the critical point (or curve)/3 =/3o(2)~ It may well be that 
there are other nonuniform phases and critical lines embedded in this 
region. 

5. D I S C U S S I O N  

In this paper we considered a one-dimensional Ising model with a Kac 
potential 7K(7 ix]) having arbitrary sign. Following the work of Gates and 
Penrose, we obtained a variational principle for the free energy in the 
classical limit 7 ~ 0+  (after the thermodynamic limit). In this formulation 
the extremal condition is a generalized mean-field equation for the 
magnetization, which may have nonuniform solutions depending on a 
spatial variable x. 

By examining the mean-field equation in the neighborhood of the 
critical point we were able to exhibit an oscillatory magnetization solution 
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with period 2~r/p o in the case where the Fourier transform of the potential 
K(x)  takes its maximum at _+p0r When the maximum occurs at Po = 0  
one recovers ordinary mean-field behavior. 

An illustrative example was used to show that when the potential has 
oscillations depending on a parameter one can expect crossover behavior 
with a Lifshitz multicritical point at the confluence of the helicoidal, 
ferromagnetic, and paramagnetic phases. 

Although we considered only the one-dimensional model, it is clear 
that the results easily generalize to d dimensions with a Kac potential now 
of the form 7aK(7 ]x]). The only change in the final result is that the 
integrals appearing arc over some d-dimensional bounded domain Q and 
are normalized by the volume of this domain [in place of the factors 
(2M)- :  in the one-dimensional case]. Fourier transforms are then taken 
over R d and the magnetization in the helicoidal phase has the form 

re(x)- 2(e//~c)i/2 cos(po .x) (5.1) 

where Po # 0 maximizes the Fourier transform of K(x). 
It is interesting to note that in three dimensions the celebrated RKKY 

potential is in fact a Kac potential of the form considered in this paper with 
r =  Ix[, 

K(r) = r 4(sin r - r cos r) (5.2) 

and 7 = k v a ,  where k v is the Fermi wave number and a is the lattice 
spacing. In this context the limit ~ ~ 0 +  is usually referred to as the 
"jellium limit." 

For  magnetic systems with small kFa (typically ,-~10 -1) the theory 
presented here should be directly relevant. One could, in particular, inter- 
pret the helicoidal or oscillatory phase for such systems as a kind of spin- 
glass phase. In this respect it would be interesting to attempt a further 
generalization of the theory to include some degree of randomness. 

A P P E N D I X .  D E R I V A T I O N  OF T H E  V A R I A T I O N A L  P R I N C I P L E  

For simplicity, we consider a one-dimensional chain of N spins 
/~i = -+ 1, i = 1, 2,..., N, with interaction energy 

E{#} = - ~ 7K(7 l i - j l )  lxiJ~j 
l ~ i < j < ~ N  

= -  ~ yK(~t l i_j[)  ~s m/ + ~  , " / K ( T l i - j [ )  (A.1) 
i ~ : j =  I . = 1  

where, in expressing it in symmetric form, we have used the fact that p2 = 1. 
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In order to obtain the variational principle (2.3), we obtain upper and 
lower bounds on the partition function 

Z(/~, 7, N ) =  ~ exp(-/~E{#}) (a.2) 
{,) 

and show that the resulting bounds for the free energy coalesce in the 
classical limit. 

In order to obtain an upper bound on the partition function, we divide 
the chain of N sites into L strips COl, CO2,..-, COL each containing s sites (so 
that N =  Ls). We now define 

Z(~, 7, N; ml, m2,..., mE)= ~'j exp(--/~E{#}) (A.3) 

where the sum over {#} is restricted to configurations with fixed 
magnetization mk in strip COk, i.e., 

mk = s -  l y, #, (A.4) 
iGcok 

Since each mk can take only 2s + 1 values, it then follows that 

Z(fl, 7, N)= ~ Z(fl, Y,N;ml,mz,...,mc) 
ml ,...,mL 

~<(2s+ 1) L max Z(fl, 7, N;ml,mz,...,mL) 
{mk, Imkl <~ 1 } 

Now, since 

ifeither # i = # ; =  + l o r & = # i = - I  

otherwise 

it is not difficult to show that 

i~k - -  = ~ - ( l + m k m t )  

j ~ r 

(A.5) 

(A.6) 

(A.7) 

fly ~ 7K(y{i-jl) 
2 i ~ j =  1 

(A.8) 

L E+ {mk}= [37s2 
2 k , l =  1 

K + ( I k -  ll)(1 + mkm,) 

It then follows from (A.1) that the exponent in (A.3) under the restriction 
(A.4) is bounded above by 
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where 

K + ( I k -  ll) = max K(7 l i -  Jl) 
i~co k 
j E f o l  

(A.9) 

Finally, since there are 

A(rn~)=s!/[ls(1 + rn~)!] [�89 -mk)!  ] (A.10) 

configurations satisfying the restriction (A.4), we obtain from (A.5) and 
(A.8) the upper bound 

Z(~,%N)<<,(2s+I) c max A(mk) exp(E+ {mk}) (A.11) 
{ m k ' [ m k r ~ l }  1 

In a similar way we obtain, for any m~, m2,... , m E, the lower bound 

Z(fl, 7, N)>~ A(mk) exp(E- {mk}) 
I - k ~  I 

(A.12) 

where E-{mk} has the same form as (A.8) but with K + replaced by K -  
defined by 

K-(lk - IF) = min K(? I i - j l )  (A.13) 
i~a~k 
j E o)! 

The inequality (A.12) in particular holds for the set of mk that maximizes 
the right-hand side of (A.11). 

The trick now is to define the (step) function m(x) by 

m(kys ) = m~ (A. 14) 

and take the "triple Lebowitz-Penrose limit" L ~ oo, 7 --+ 0, and s ~ oo in 
an appropriate and convenient fashion. In particular, if we set L = M/?s 
and hold s fixed, the sums on the right-hand side of the expression (A.8) for 
U-~E+{mk} (and similarly for U ~E-{mk}) become Riemann sums 
(recalling N =  Ls) and it is not difficult to see that 

lim lira N-1E+{mk} 
7 ~ 0 +  L ~ o o  

=M~lim fl(2M)-~ff~o K(lx--y[)m(x)m(y)dxdy (A.15) 
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Similarly, if we use Stirling's formula for the factorial function in 
(A.IO) (for large s), we obtain 

L 

lira lim lira N -  1log 1-I A(mk) 
s ~ c o  7 ~ 0 +  L ~ o o  k ~ l  

= - - l i r a  M -1 { � 8 9 1 8 9  
M ~ o o  

§ �89 - m(x) ]  log �89 - rn(x)]  } dx (A.16) 

Combining these results with the bounds  (A.11) and (A.12) for the 
parti t ion function and noting that 

lim lira N - ~ l o g ( 2 s + l ) c = 0  (A.17) 
S ~ 3 0  L ~ O O  

we obtain, finally, the variational principle (2.3) for the limiting free energy 
t#(fi) defined by 

- f i ~ ( f l ) =  lim lira lim N i logZ(f l ,  7, N) (A.18) 
s ~ o O  y ~ O +  L ~  

where, for later convenience, we have used the symmetry of K(x) and 
defined m ( x ) =  m ( - x )  for x < 0 to extend the ranges of integration in the 
above results to the interval ( - M ,  M). 

For  further discussion and detailed justification of the limiting 
procedures described above and, in particular, the ordering of the 
operations in (2.2), the reader is referred to the original work of  Gates and 
Penrose. 
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